
Online Submission ID: 6560

Filling the Void: Deep Learning-based Reconstruction of Sampled
Spatiotemporal Scientific Simulation Data

Category: Research

Figure 1: The high-level workflow of our deep learning-based approach to reconstruct 3D volume datasets from sampled data.
(a) After a sampled dataset is generated from a regular grid dataset, (b) a fully connected neural network is trained over the
features extracted from the void locations. (c) The network is tested over sampling percentages, an ensemble of such networks is
tested over timesteps for a single simulation, and finally the network is tested reconstructing at multiple higher resolutions. (d) We
additionally develop an interface to review, analyze, and compare dataset reconstructions between our deep learning approach and
Delaunay triangulation.

ABSTRACT

As high-performance computing systems continue to advance, the
gap between computing performance and I/O capabilities is widen-
ing. This bottleneck limits the storage capabilities of increasingly
large-scale simulations, which generate data at never-before-seen
granularities while only being able to store a small subset of the raw
data. Recently, strategies for data-driven sampling have been pro-
posed to intelligently sample the data in a way that achieves high data
reduction rates while preserving important regions or features with
high fidelity. However, a thorough analysis of how such intelligent
samples can be used for data reconstruction is lacking. We propose
an AI-driven approach based on training neural networks to recon-
struct full-scale datasets based on a simulation’s sampled output.
Compared to current state-of-the-art reconstruction approaches such
as Delaunay triangulation, we demonstrate that deep learning-based
reconstruction has several advantages, including reconstruction qual-
ity and time-to-reconstruct. We propose and evaluate strategies that
balance the sampling rates with model training and data reconstruc-
tion time to demonstrate how such AI approaches can be tailored for
both speed and quality, and develop a visual analytics interface for
comparing the reconstruction quality of grid-based datasets.

Index Terms: Computing methodologies—Modeling and
simulation—Simulation types and techniques—Scientific visual-
ization; Computing methodologies—Machine learning—Machine
learning approaches—Neural networks

1 INTRODUCTION

As high performance computing (HPC) approaches the age of ex-
ascale computing, the gap between the ability of such systems to
produce massive amounts of data and existing networks to efficiently
transport and store such data continues to widen. Scientific simu-
lations can produce petabytes of data at each timestep with very
high spatial and temporal resolution. Disk I/O is the bottleneck, as
the time it takes to transport, store, and post-process the data is far
outpacing the time it takes to produce it.

Data sub-sampling is a widely applied data reduction method
that selects a subset of the dataset for storage. Several in situ sam-
pling strategies that have been studied in the context of scientific
simulations, including stratified random sampling [24], bitmap in-
dexing [21], and adaptive sampling [17]. However, as HPC will
soon include exascale machines, sampling strategies are becoming
more aggressive—storing as little as 1% or even 0.1% of the data at
each timestep. Recent sampling strategies [6, 7] are addressing this
by weighting the importance given to data points when doing sam-
pling. In this way, important features can be preserved by weighting
sampling distributions towards points associated with (or nearby to)
potential features, which is important particularly for visualization
tasks such as volume rendering and isosurface contouring, while
allowing very low sampling rates.

The inverse of data sampling is data reconstruction: going from
a sampled dataset back to the full-resolution dataset. For scientific
simulations, a primary consideration of reconstruction is not only
to obtain as similar a result to the original data as possible, but also
to preserve important data features. Intrinsically, reconstruction
algorithms imbue some amount of noise in the reconstructed data.
A reconstruction algorithm is considered poor if the amount of
noise added to the reconstruction is higher than the signal value
present. As an example, Delaunay triangulation [6] is a popular and
well-regarded reconstruction algorithm with good signal-to-noise
performance. However, a major drawback is its time complexity,
which increases exponentially with sampling percent, making it
unsuitable for large-scale datasets such as those increasingly found
in HPC scientific simulations.

Recently, machine learning (ML) and artificial intelligence (AI)
approaches have been proposed for reconstruction [9,22], employing
complex deep learning architectures to predict a high-resolution data
from a low resolution data. Thus far, such methods have only been
applied to datasets that are highly structured and complete, i.e. where
each data point has all the spatial and physical features present and
thus can be easily defined. To illustrate this, if a dataset is sampled
for 1% of its data points, the remaining 99% of data points are

1



Online Submission ID: 6560

discarded. Thus we lose the spatial features for even those 1% of
data points since we now are dealing with missing data. The task
of retrieving the missing 99% of data points (which we refer to
as void locations) is non-trivial because the sampled data is now
unstructured. Performing convolution or using any machine learning
algorithm which takes an image as input is not suitable. The result
is that current AI/ML reconstruction approaches are incompatible
with the aggressive sampling strategies being developed for exascale
computing.

This motivates the work described in this paper: to develop and
test the capabilities of a deep learning strategy to reconstruct from
unstructured data, both with higher quality and for large datasets
that are sampled with highly aggressive strategies. Specifically, we
are concerned with scientific simulations that are spatiotemporal in
nature. These types of simulations are widespread, and due to their
increasing resolution (as HPC systems advance and scale), they will
soon necessitate aggressive sampling strategies that may only be
able to preserve 0.1% or 1% of all raw data points at each timestep.

In this paper, we employ fully connected neural networks (FC-
NNs) for deep learning-based reconstruction of unstructured sam-
pled datasets which goes as an input and a structured reconstructed
volume data is produced as an output. Using Delaunay triangulation-
based linear interpolation [6] as a baseline for comparison, we test
this approach using three well-known scientific simulation bench-
mark datasets: Hurricane Isabel [1], combustion data [2], and the
ExaAM dataset [3] in a trio of experiments: (1) reconstruction based
on varying the sampling percent for a single timestep, (2) training
the FCNN on a single timestep and then reconstructing the dataset
over multiple timesteps and (3) training on a low resolution dataset
and predicting higher resolutions.

Compared to Delaunay triangulation, deep learning has both
advantages and disadvantages. The primary drawback is training
cost: as the size of a sampled dataset increases the time required to
train a model will also increase. However, deep learning holds major
advantages. A model once trained can be stored for usage later
on (either in subsequent timesteps or simulation runs), meaning
the cost of training a neural network is amortized by usage on
subsequent timesteps. In contrast, rule-based methods like Delaunay
triangulation must reconstruct from scratch at every timestep. Our
experimental results show that our FCNNs reconstruct datasets both
much faster and at higher quality than Delaunay’s triangulation.

Additionally, a key finding in our experiments is that a neural
network trained on a single sampling percentage can effectively
reconstruct at different sampling percentages and at different res-
olutions. This means that an FCNN can be trained once, and then
reconstruct a simulation at different sampling percentages, and can
volumetrically upscale the simulation’s full resolution. We con-
sistently see across the three studied datasets that neural networks
maintain these key features as well as overall high performance in
comparison to Delauany triangulation, indicating that they provide a
generalizable technique that can be adopted and replicated across
scientific datasets datasets for various timesteps, and resolutions.

More broadly, our experiments indicate that deep learning rep-
resents a promising strategy for solving the problem of conversion
from unstructured to structured data. To further demonstrate our
approach, we develop a novel visual analytics interface for ana-
lyzing and comparing dataset reconstructions between FCNNs and
Delaunay triangulation. The interface can also help the user identify
regions of interest based on high or low quality reconstruction re-
gions to focus their attention on, such as features of interest that are
reconstructed poorly. To promote adoption and reuse, this interface
codebase is open-sourced. To summarize, the main contribution of
our work are threefold:

• We develop a deep learning approach to convert unstructured
sampled data to structured volume datasets with higher quality
and in faster time compared to the current state-of-the art.

• We evaluate the robustness of our deep learning approach
over different datasets, sampling percentages, timesteps, and
reconstruction resolutions with minimal retraining of the neural
network.

• We develop a visualization interface for reconstruction review,
comparison, and analysis of reconstructed techniques.

2 RELATED WORK

Deep Learning in Scientific Visualization. In recent years there
has been a steep increase in the use of various deep learning to
address challenges in scientific visualization. Several studies include
upscaling volume resolution by various sophisticated ML techniques.
Zhou et al. [4] used a convolutional neural network (CNN) to achieve
better quality upscaled resolution. The method has been proven to
be better than traditional trilinear or cubic spline methods. Guo et
al. proposed Ssr-vfd [9] which produces a spatially coherent high
resolution data for vector field data by using three different neural
networks. Following a similar line of work Weiss et al. proposed
[22] an image-space reconstruction of low-resolution images of
isosurfaces to higher resolutions.

Another work which focuses on super resolution data generation
is Han et al. [11], which uses a recurrent generative network (RGN)
to generate high resolution volumes for temporal datasets from low
resolution ones. It uses a generative network to produce volumes
which then a discriminator decides the realness for. The network
interpolates between two immediate volume sequences to give an
output. Papers such as [5] and [14] focus on synthesizing volume
by analyzing and playing around with the transfer functions. The
former paper lets a user explore a latent space which encodes the
effect of changing the transfer function on a volume rendering. This
lets the user explore, analyze and generate volume data without an
explicit mention of the transfer function. The latter paper avoids
the exploration of transfer function so as to decrease cognitive load
by training a deep neural network to obtain a goal effect image
to obtain renderings under different viewing parameters without
explicitly knowing the transfer function.

A similar paper in the lines of exploring the parameter space was
proposed by He et al. [13] which is meant to generate volume data
by exploring the parameter space for large ensemble simulations.
Variations in simulation parameters under various visualization set-
tings can help create new images. et al. [15] used long short term
memory (LSTM) based recurrent neural network (RNN) models to
estimate the access patterns for parallel particle tracing in distributed
environments. Using their trained model they predicted the next
block to load while performing distributed particle tracing.

Several papers on flow field datasets have also been published
which make use of several deep learning techniques. Han et al. [10]
proposed an autoencoder framework to learn to cluster flow lines
and surfaces. The autoencoder network learns the later feature de-
scriptors from binary volumes generated from a flow field dataset.
This paper also offers an interactive visualization tool to explore the
flow lines and surfaces. Also an amalgamation for high resolution
data for flow datasets was proposed by Xie et al [25] as TempoGAN
which uses a temporal discriminator in addition to a spatial gener-
ator which preserves the data’s temporal coherence. Weiwel et al.
presented [23] an LSTM-based approach to predict dense volumet-
ric time varying physical functions. However in all the mentioned
methods, the data is structured and has no missing data points to
deal with, thus enabling the usage of sophisticated machine learning
techniques.

Sampling-based Visualization. Data sampling methods have
been widely used in the scientific visualization community to reduce
the size of large-scale data sets. Woodring et al. [24] proposed a
stratified random sampling based algorithm for cosmology simula-
tions to enable interactive post-hoc visualization. Park et al. [18]
proposed a visualization aware sampling technique which could

2



Online Submission ID: 6560

produce an accurate complete visualization for scatter plot and map
plot based visualizations. However this technique is specific for
these visualization types, and does not generalize to 3D scientific
simulation data.

In another work, Nguyen and Song [16] used a centrality-driven
clustering approach to improve random sampling. Some other works
which utilize information quantification techniques such as entropy
have been proposed for sampling scientific datasets. Dutta et al. [8]
proposed a point wise mutual information based approach for multi-
variate sampling to identify regions with high mutual information
among the variables. Rapp et al. [19] proposed a method for scat-
tered datasets which extracts a sample of points while preserving its
blue noise properties. Biswas et al. [6, 7] proposed an in situ sam-
pling technique which preserves important data features along with
the gradient properties. This technique also ensures the extraction
of important data features given a storage constraint. We tested this
sampling method across various datasets and it showed good recon-
struction quality when using Delaunay’s method. We thus utilize the
Biswas et al. [6] technique for all data sampling conducted in this
work.

3 METHODOLOGY

Figures 1(a–c) shows a high-level illustration of our proposed strat-
egy. To learn the underlying features, we first extract a training
dataset based on a sampled dataset and use this to train a deep
neural network. We test the capabilities of the neural network by
experimenting with (1) different sampling percentages, (2) differ-
ent timesteps for a single sampling percentage, and (3) different
data resolutions. For each experiment, we compare the reconstruc-
tion results using deep learning to the reconstruction results using
Delaunay triangulation.

In this section, we first introduce the experimental datasets that
we use for testing and evaluating deep learning-based reconstruction.
Next, we give a brief overview of FCNNs in the context of regres-
sion (predicting continuous values) and describe our specific FCNN
implementation. We conclude this section with a brief overview of
the feature engineering considerations for our FCNN approach (see
Section 6 for more discussion on this).

(a) Original data (b) Reconstruction
via FCNN

(c) Reconstruction
via Delaunay
triangulation

Figure 2: This figure shows reconstruction on the combustion dataset.
The original, unsampled data is shown in (a). After sampling 1% of
grid points, the dataset is reconstructed using (b) an FCNN and (c)
Delaunay triangulation. Reconstruction quality is reported in more
detail in Experiment 1.

3.1 Experimental Datasets
We employ three well-known scientific simulation datasets to test
deep learning-based reconstruction. These datasets are represen-
tative of the types of data seen in scientific computing. For each
dataset, we select an important scalar attribute to sample and recon-
struct.

Hurricane Isabel: The Hurricane Isabel dataset [1] simulates the
development of a hurricane in the West Atlantic region. It consists

(a) Original data

(b) Reconstruction via FCNN

(c) Reconstruction via Delaunay triangulation

Figure 3: This figure shows reconstruction on the ExaAM dataset.
The original, unsampled data is shown in (a). After sampling 1% of
grid points, the dataset is reconstructed using (b) an FCNN and (c)
Delauany triangulation. Reconstruction quality is reported in more
detail in Experiment 1.

of eleven varying scalar and vector attributes. We test our method
using the pressure attribute, which is indicative of the a hurricane’s
intensity [12]. This dataset has a resolution of 250×250×50 over
48 timesteps. Figure 1 contains images of the Hurricane Isabel
dataset using a blue-white-red diverging color scale. The eye of
the hurricane—a very low pressure area—is the blue circle in each
sample image.

Combustion: The combustion dataset [2] simulates a turbulent
combustion process. It consists of five scalar attributes. We test
using the Mixfrac variable, which is the proportion of fuel and
oxidizer mass. This attribute can indicates the flame’s location
where the chemical reaction rate exceeds the turbulent mixing rate.
This dataset has a resolution of 480×720×120 over 122 timesteps.
Figure 2(a) shows an example of the combustion dataset.

ExaAM: The ExaAM dataset [3] simulates a laser heat source
moving through a material—specifically Inconel 625—which first
melts and then re-solidifies. It consists of the temperature scalar
attribute. We test using the temperature attribute, which becomes
very high around the laser’s current location. This dataset has a
resolution of 20×200×50 over 108 timesteps. Figure 3(a) shows
an example of the ExaAM dataset.

3.2 An Overview of Fully Connected Neural Networks

Fully connected neural networks, or FCNNs, are a class of artificial
neural networks where the architecture is such that all the nodes (or
neurons) in each layer Li are connected to the nodes (neurons) in the
next layer Li+1. Edges between layers are associated with weights
that determine the amount of importance to be given to a particular
neuron.

An FCNN with n layers has three types of layers: (1) An input
layer (L1) whose values are provided, normally described as an
input feature vector. (2) A set of intermediate hidden layers (L2 −
Ln−1) whose values are derived from previous layers. (3) An output
layer (Ln) whose values are derived from the last hidden layer. The
output layer’s values can be considered as the model’s end result or
prediction. In our case, we are interested in predicting continuous
numerical values (regression).

Iteratively calculating the values of neurons at each layer till we
reach the output layer is called forward propagation. On the basis
of the data, linear or non-linear activation functions can be applied.
Forward propagation can be calculated as follows:

3



Online Submission ID: 6560

h(l) = σ(Wh(l−1)+b)

Here, W, h, b, and l represent weights, inputs, bias and the layer
number respectively. The σ is the activation applied on each layer.
Common activation functions include ReLU, softmax and tanh. In
our case, we used ReLU activation, defined as follows:{

0 hl < 0
hl hl >= 0

Back Propagation: To train an FCNN, the final outputs of a model
for data items computed via forward propagation are compared to
a ground truth based on an error or loss function. Common error
functions include binary cross-entropy and root mean square error,
or RSME. We use mean square error (MSE) to calculate the loss.

E =
1
n

n

∑
i=1

(yi − ŷi)
2

By minimizing the calculated error, the weights between neurons
are optimized via a process called back propagation—this is the
“learning” part of deep learning. Back propagation works computes
the error gradients of each neuron, iteratively for each layer from
the output layer backwards.

δE
δw(L)

=
δE

δh(L)
× δh(L)

δw(L)

Then, an optimization algorithm such as gradient descent updates
the weights of the neurons in the model in each layer.

w(L) = w(L)−η × δE
δw(L)

where η is the learning rate. Performing this method multiple times
results in a decreased loss between the predicted output and the
actual output, leading to a trained neural network.

3.3 Training Dataset and FCNN Architecture

During a large-scale scientific simulation, it is reasonable that the
full-resolution dataset is only available for the current timestep.
Therefore, training data should be confined to a single available
timestep. Figure 4 shows the process we use to train an FCNN for
scientific data reconstruction.

The dataset’s grid points for the timestep are divided into two
groups, void locations and sampled points, based on whether or not
each grid point is included in the sampling set. By void locations,
we refer to grid points in the dataset which were rejected by the
sampling algorithm. The set of void locations for a sampled dataset
is the set of points not included in the sampled set. Such void or
empty grid locations lack the scalar value which acts like missing
data.

For each void location from the set of rejected points, the five
nearest sampled points are identified and a [1×23] feature vector is
created consisting of (1) the x, y, and z coordinates and scalar values
for each of the five closest sampled points and (2) the x, y, and z
coordinates of the void location itself. The set of vectors for all void
locations constitutes the training dataset for the FCNN.

The FCNN’s input layer therefore consists of 23 neurons corre-
sponding to the [1× 23] vector created for each void point. Five
hidden layers are then applied. The output layer predicts a [1×4]
vector: the scalar value and the x, y, and z gradients for a grid point.

Figure 4: The process to create a training dataset is as follows: (a)
Extract void location values, and (b) for each, find the five nearest
sampled points. (c) (c) The x,y and z coordinates of each of the
sampled point, the coordinates of the corresponding void point and
the scalar values associated with each sampled point is concatenated
to form a [1×23] input feature vector. (d) The training data created
is then sent as an input to the FCNN to give a reconstructed image
as an output.

Figure 5: The FCNN architecture that we utilize is composed of five
hidden layers of size 500–15, and outputs a scalar value as well as
the x-, y-, and z-gradients for a reconstructed point.

3.4 Selecting and Tuning the FCNN
The previous subsection describes the “final” FCNN architecture
(also shown in Figure 5) we employ for data reconstruction in this
paper. Here, we briefly address why FCNNs are selected as an ar-
chitecture, the feature engineering employed for the training dataset
(i.e., creating the [1×23] vector using the five sampled points closest
to each unsampled grid point), and the architectural considerations
for the FCNN.

Why FCNNs? FCNNs are sometimes disdained as “straightfor-
ward” or “simple” neural network architectures, as each layer is
fully connected, they do not contain specialized layers (convolu-
tional layers, pooling layers, etc.), and neurons do not incorporate
any notion of temporal sequence. Despite this, FCNNs provide an
appropriate model space for exploring reconstruction, in contrast
to more complex models such as CNNs and RNNs. This is due to
two key points: (1) The aggressive sampling strategies employed
for scientific computing result in unstructured point-based datasets
with a large number of void or missing data points. CNNs, which
are widely used for images, require complete and structured data for
pooling and convolution functions. (2) For large-scale simulations

4



Online Submission ID: 6560

running on distributed HPC resources, it is impractical to store mul-
tiple timesteps for training models. Deep learning models that are
trained in situ cannot take advantage of dataset temporality, which is
the key feature of RNNs.

Choosing an appropriate number of hidden layers. Model
complexity can have a large effect on the overall performance of
the neural network. For example, a very simplistic model might
underfit the data, resulting in high training error. In contrast, an
overly complex model might overfit, resulting in a very low train
error but an extremely high test error (ultimately making the model
not generalizable). Along these lines, a large number of hidden
layers has the potential to not just capture the data feature dynamics,
but also to capture spurious statistical noises or biases in the data [20]

Figure 6: Average SNR values
when varying the number of
hidden layers on the Hurricane
Isabel dataset.

To find the appropriate num-
ber of hidden layers, we tested
reconstructing the Hurricane
Isabel dataset with different
numbers of hidden layers (be-
tween one and nine hidden lay-
ers). Figure 6 shows the re-
sults. Reconstruction quality
(measured as signal-to-noise
ratio, or SNR, see Section 4)
is plotted against the number
of hidden layers in the FCNN.
The SNR for both one hidden
layer (20.33) and nine hidden
layers (25.71) is lower than for
five layers (28.51). Our assumption is that an FCNN with one hidden
layer does not learn the features very well because of a high bias
(too simple model). In contrast, an FCNN with nine layers likely
overfits the training data. In addition, a larger model increases the
FCNN’s training time. Five hidden layers achieves high quality
while minimizing training time and the potential to overfit.

Figure 7: Average SNR values
when training on different sam-
pling percentages on the Hurri-
cane Isabel dataset.

Sampling points. Sam-
pling percentage refers to the
total percent of data points that
are saved in relation to the en-
tire dataset. As the sampling
percentage increases, sampled
points will generally be closer
to each other, while decreas-
ing sampling percentage will
result in sampled points be-
ing farther apart. Our assump-
tion that an FCNN will, when
weights are assigned to fea-
tures, given higher weights to
sampled points that are closest
to the void location, compared
to sampled points which are farther away. We want the FCNN to
provide good reconstruction results for these void locations over a
range of sampling percentages, which might range from sub-1% to
5% or 10% of the original dataset.

Figure 7 shows how varying the sampling percentage during
training affects reconstruction quality (SNR) when performing re-
construction for different sampling percents on the Hurricane Isabel
dataset. When the model is trained on a 1% sampling of the data
(orange line) and used to reconstruct a dataset that has been sampled
at 1% or lower, SNR values are high, but reconstruction quality
flatlines as the sampling percentage increases to 3% and higher. The
reason is that as sampling percent increases, the distance between
sampled points decreases. This behavior is not captured well using
a 1% trained model, which assumes sampled points are spaced far
apart. The opposite effect occurs when the model is trained on 5%
of data (green line). Data reconstruction using higher sampling

percentages (4% and higher) have high SNR, but at lower sampling
percentage the model fails to capture the large distances between
sampled points. As a solution, we combine data points from both
the 1% and 5% sampling percentages into a concatenated dataset
(pink line). This “1%5% model” provides good results at both ends
of the sampling spectrum, and is what is used in our FCNN design.

Figure 8: SNR values in gradi-
ent vs no gradient in the output
layer of the FCNN.

Gradients in Output
Layer: Generating gradient
values along with the scalar
values in the output layer helps
achieve better reconstruction
quality as compared to when
generating only the scalar
values. This is because, by
including gradient values
the network is enforced to
take into consideration the
neighbouring locations’ values
while outputting the scalar
value at a given location. For
example, two different spatial locations can have the same scalar
values, but depending on the shape of the data features, they may
have different gradient values. Our FCNN approach takes this
factor into account when reconstructing the full scalar fields from
sampled points. Figure 8 shows the result of a study we performed
to empirically verify the influence of producing gradient values in
the output layer. We performed this study by removing the gradient
neurons from the output layer to compare the reconstruction quality
with our proposed FCNN. The pink and the green curves correspond
to the SNR values of reconstruction with increasing sampling
percentage for “with gradient” and “without gradient” networks
respectively. As can be seen, having the gradients in the output layer
improve the overall reconstruction quality of our network.

4 EXPERIMENTS AND RESULTS

We test our deep learning-based approach against Delaunay trian-
gulation to reconstruct from sampled data back to a full-resolution
dataset. To calculate the reconstruction quality, we use signal-to-
noise ratio (SNR), defined as follows:

SNR = 20∗ log10
σraw

σnoise

Here, σraw is the standard deviation of the original data and σnoise
is the standard deviation of the noise in the reconstructed data. Noise
in a dataset is the difference among the values of the original data
and the reconstructed data. A good reconstruction is represented by
having a lower noise value, which means the reconstructed image
is similar to the original data. Thus if the reconstruction is quite
similar to the original data, the variance of the noise present in the
reconstructed data decreases, but the variance of the original data
will not change. Thus, a well reconstructed image has higher SNR.

In general, for both methods, a higher sampling percentage will
lead to a better reconstruction. To investigate this, we perform three
different experiments. We are interested not only in seeing if FCNN
has a better reconstruction quality than the Delaunay triangulation,
but want to see the time required by our deep learning approach to
reconstruct the dataset.

4.1 Testing Setup
We conducted our experiments using the <Anonymous> HPC re-
search cluster at <Anonymous Institution>. This compute cluster
contains approximately 500 heterogeneous compute nodes and can
compute at over 800 Teraflops. For our experiments, we used a sin-
gle compute node containing eight CPU cores and one one GeForce
GTX 1080 GPU. When conducting experiments, we first use the

5



Online Submission ID: 6560

(a) Hurricane Isabel (t=25) (b) Combusion (t = 41) (c) ExaAM (t = 78)

Figure 9: Reconstruction quality (SNR) for FCNN and Delaunay triangulation at different sampling percentages for a single timestep t.

(a) Hurricane Isabel (t=25) (b) Combusion (t = 41) (c) ExaAM (t = 78)

Figure 10: Reconstruction time in seconds for FCNN and Delaunay trianguation at different sampling percentages for a single timestep t.

sampling technique by Biswas et al. [6] to sample the data for a
given sampling percentage (between 0.1% and 8%). This converts
the original regular grid dataset, stored as a .vti file (XML Image
data), into a point-based dataset stored using the .vtp file format
(XML Poly data). Both reconstruction methods are applied on this
sampled dataset, and output the reconstructed dataset as .vtp format.
To calculate SNR, we compare scalar values in the reconstructred
.vtp file to the true scalar values in the original .vti file(s).

4.2 Experiment 1: Varying Sampling Percentages

The first experiment compares reconstruction quality over different
sampling percentages at a single timestep. We trained the network
as explained in Section 3. We then tested reconstruction on the
three datasets with ten sampling percentages from 0.1% to 8%.
Figure 9 shows the reconstruction quality and Figure 10 shows the
corresponding time to reconstruction.

For both methods, reconstruction quality increases as the sam-
pling percentage increases. At 0.1% sampling percentages, FCNN
and Delaunay triangulation have comparable SNR. However, SNR
is generally higher for FCNN except for two instance: Hurricane
Isabel at 8% and the combustion dataset above 5.0%.

In analyzing reconstruction time, we first note that Figure 10 does
not include model training time—this is considered in Experiment
2. For a trained FCNN, reconstruction occurs in constant time
(with respect to the full dataset size) and is independent of the
sampling percent. In contrast, Delaunay triangulation increases
exponentially with regards to the number of data points (i.e., the
sampling percentage). This can be seen in all three datasets in
Figure 10: the FCNN line is flat while the Delaunay triangulation
line arcs upward as sampling percentage increases.

This highlights a key benefit to this experiment: the flexibility
of FCNNs. For each dataset, we use a single trained FCNN to re-
construct across all sampling percentages. In contrast, Delaunay
triangulation must start from scratch for each reconstruction, and the
time increases exponentially based on the number of data points in
the sample. For the small ExaAM dataset in Figure 10(c), FCNN’s
constant time is greater than Delauny triangulation, however, for

the two larger datasets reconstruction time via FCNN quickly be-
comes trivial compared to Delaunay triangulation. As an example,
Delaunay triangulation requires about approximately 20 minutes to
reconstruct a single timestep for the Hurricane Isabel dataast at 5%
sampling percentage. The FCNN reconstructs in 28 seconds. For
adaptive techniques, which might vary the number of sampled points
at each timestep during a simulation run, deep learning guarantees a
fast reconstruction time that Delaunay triangulation cannot.

4.3 Experiment 2: Testing Over Multiple Timesteps

In Experiment 1, FCNNs generally outperform Delaunay triangu-
lation both in terms of quality and reconstruction time. However,
Experiment 1 does not consider the time required to train the FCNN
models. The reasoning is that, while training time for a neural
network is a computationally expensive process even for a straight-
forward architecture like an FCNN, a key benefit is that a trained
neural network can be saved and re-used. In our case, the model can
be used over subsequent timesteps or simulation runs. In contrast,
Delaunay triangulation reconstructs from scratch at each timestep.

Experiment 2 tests how an FCNN trained on one timestep can be
used to reconstruct on other timesteps. We focus on the Hurricane
Isabel dataset using a 3% sampling percentage, as this simulation
showcases a highly complex weather process with features that
change significantly over the course of the run as the hurricane
moves across the Gulf of Mexico and makes landfall.

Figures 11 and 12 show reconstruction quality and cumulative
reconstruction time over the simulation’s 48 timesteps. Each plot
contains three lines. The blue line shows reconstruction using De-
launay triangulation. The orange line shows reconstruction using an
FCNN trained on timestep t = 0 and used to predict on all timesteps.
The pink line shows reconstruction using an FCNN that is initially
trained on t = 0 and then partially retrained every 10th timestep.

The motivation for this partial retraining technique is based the
fact that not all data features change in consecutive timesteps. Thus
instead of training at each timestep, or fully retraining when re-
construction quality degrades, we instead used an already-trained
network to learn the new set of changes in data which occur in the

6



Online Submission ID: 6560

Figure 11: This figure shows reconstruction quality for the Hurricane Isabel dataset over its 48 timesteps using a 3% sampling percentage at
each timestep. FCNNs generally provide higher quality than Delaunay triangulation. Vertical lines indicate timesteps where the pink “FCNN
with retraining” line was trained (t = 0) or retrained (every subsequent 10 timesteps). The orange “FCNN training on t = 0” line reconstructs
all timesteps using the initial FCNN model trained on the first timestep.

Figure 12: This figure shows the cumulative reconstruction time in hours for the Hurricane Isabel dataset over its 48 timesteps using a 3%
sampling percentage at each timestep. At each timestep, reconstruction time using Delaunay triangulation averages 0.05 hours. Vertical lines
indicate timesteps where the pink “FCNN with retraining” line was trained (t = 0) or retrained (every subsequent 10 timesteps). Reconstruction
time for both FCNN methods on timesteps that no retraining happens average 0.16 minutes. When training/re-training time is included, the
cumulative times are 3.71 hours for the FCNN with re-training, 2.6 hours for the FCNN trained on the first timestep, and 2.76 hours for
Delaunay triangulation.

Figure 13: SNR values of Hurricane Isabel dataset at different res-
olutions at different sampling percentages. Note that Delaunay
triangulation did not complete reconstruction (over 12 hours) when
run at higher resolutions.

next time step by training it for a few epochs till the change in loss
starts to become negligible.

In other words, at t = 0, an FCNN is fully trained and used to
begin reconstructing timesteps.If a certain amount of time has passed
(or assuming a more nuanced setup, if the reconstruction quality
decreases past a certain threshold), the FCNN can be retrained to a
certain epoch, and this updated FCNN is used going forward until
retraining is again required.

The advantage to this partial retraining approach is that retrain-
ing a network takes much less time than training from scratch, as
seen in Figure 12. The training at timestep t = 0 required approxi-
mately 2.5 hours, but using retrainings cumulatively required 3.71
hours. (Timesteps where retraining occurred are marked by vertical
lines). If the FCNN was fully retrained at every timestep, the total
time would have equaled approximately 120 hours (2.5 hrs × 48

(a) Upscaled reconstruction to
375×375×75

(b) Upscaled reconstruction to
500×500×100

Figure 14: This figure shows volume upscaling while performing
reconstruction on the Hurricane Isabel dataset at 4% sampling per-
centage. The dataset used for sampling and FCNN training is
250× 250× 50, but the reconstructed datasets are 1.5× and 2×
those dimensions.

timesteps). On timesteps that did not require retraining, reconstruc-
tion time was negligible for both FCNN methods (averaging 9.6
seconds). In contrast, Delaunay triangulation averaged 3.45 minutes
to reconstruct each timestep. Cumulatively, Delaunay triangulation
required 2.76 hours to reconstruct all 48 timesteps in the Hurricane
Isabel dataset. The FCNN only trained on timestep t = 0 took 2.6
hours, and the FCNN that used partial retraining took 3.71 hours.

In terms of reconstruction quality, for a network only trained on
the t = 0 timestep and tested over other timesteps (with no partial
retraining), reconstruction quality decreases as timesteps increase. A
possible reason for this is due to a combination of the spatial move-
ment of features of interest (e.g., the hurricane eye) and in physical
values throughout the dataset. The FCNN without retraining line in
Figure 11 performs worse than Delaunay triangulation for the major-

7



Online Submission ID: 6560

Figure 15: The visualization interface consists of six linked panels to support comparing reconstruction quality of FCNN, Delaunay triangulation,
and the ground truth data. See Section 5 for details.

ity of timesteps. However, when partial retraining is employed, the
FCNN’s SNR values are higher compared to Delaunay triangulation
for the majority of timesteps. This indicates that partial retraining is
a good strategy for maintaining high reconstruction quality.

As a note on this experiment, even though the partial retraining
cumulatively took more time than Delaunay triangulation (3.71 vs.
2.76 hours), there are benefits to the deep learning approach. In
a simulation with more timesteps, Delaunay triangulation would
quickly catch up and overtake the FCNN in cumulative time, even
with partial retraining. As training time for a neural network is
partially machine dependent, the model (re)training process can be
offloaded to optimized compute nodes with higher memory and GPU
capabilities, reducing the time required for this step. Additionally, as
either the sampling percentage or dataset size increases and Delaunay
triangulation’s computational time increases exponentially, the trade
off between the methods will tilt in favor the deep learning approach
(see Experiment 3).

4.4 Experiment 3: Reconstruction Volume Upscaling
Generation of higher resolution data from lower resolution is called
volume upscaling. This problem has been extensively studied in the
field of scientific visualization, as discussed in Section 2.

For the third experiment, we wanted to test volume upscaling:
Could we train an FCNN on a lower resolution dataset and apply it to
reconstruct the samples taken from a higher resolution data? For this
we used the Hurricane Isabel dataset. As mentioned in Section 3.1,
the dataset has a resolution of 250× 250× 50. We intended to
replicate Experiment 1 with this dataset, but now reconstructing to a
double the resolution size: 500×500×100. This is the resolution
of the original Hurricane Isabel dataset, which means we can test
reconstruction quality by computing SNR against a resolution that
is 2× upscaled on each dimension (and hence a dataset that is 8×
larger).

We first tested this 2× upscaled reconstruction using 1% sam-
pling percentage. The Delaunay triangulation process ran for over
12 hours without returning a result. An analysis of Delaunay tri-
angulation’s run time indicates why this happened. As Delaunay
triangulation is exponential regarding the number of sampled points,

doubling the resolution size results in 25M points before sampling.
Even at 1% sampling, the method must run on 250k points. We
also tested Delaunay triangulation on a 1.5× upscaled resolution
(375×375×75 points) at 1% sampling percentage, but this calcula-
tion again ran for 12 hours without a result. This illustrates a critical
limitation for Delaunay triangulation: for large scale simulations, it
simply becomes unusable.

We next tested using an FCNN to create an upscaled reconstruc-
tion. We use the same FCNN for the Hurricane Isabel dataset from
Experiment 1, only now we are reconstructing a dataset double the
size that it has been trained on. The 2× upscaling result is shown in
Figure 13 (green line) and Figure 13(b). For comparison, Figure 13
also plots the Delaunay triangulation and FCNN results from Exper-
iment 1, to illustrate how upscaling produces a comparable result,
as well as a 1.5× upscaled result (again using the same FCNN from
Experiment 1). A screenshot of the 1.5× upscaling reconstruction
is shown in Figure 14(a). The upscaled reconstruction times aver-
aged 28 seconds for the 2× upscaling and 20 seconds for the 1.5×
upscaling, with have SNRs of 30.6 and 26.2, respectively.

A corollary to this experiment is that an FCNN trained on an HPC
machine can be downloaded and run on lower-end hardware. For
example, we tested reconstruction on a 2018 MacBook Pro running
macOS Mojave with 32 GB of memory and an Intel i9 processor.
While both FCNN and Delaunay triangulation were able to recon-
struct the (non-upscaled) ExaAM dataset at all sampling percentages,
as this was the smallest dataset tested, at higher sampling percent-
ages for the Hurricane Isabel and combustion datasets (above 7%
and 5%, respectively) the laptop would run out of memory and crash
when reconstructing with Delaunay triangulation. In contrast, the
FCNN could successfully reconstruct.

5 RECONSTRUCTION VISUALIZATION INTERFACE

To further demonstrate and understand the differences between re-
construction via deep learning versus Delaunay triangulation, we
developed a visual analytics interface, shown in Figure 15. The
intent with this design was to produce a software artifact to help data
scientists analyze and understand how the different techniques recon-
struct 3D scientific simulation datasets. The interface is primarily

8



Online Submission ID: 6560

(a) FCNN (b) Delauany triangulation

Figure 16: This figure shows how reconstruction error for the Hurri-
cane Isabel dataset (with 1% sampling percentage) differs between
FCNN and Delaunay triangulation.

written in D3.js and VTK.js, and the codebase is open-sourced at the
following URL: Anonymized for submission. (A video demon-
strating the interface may be found in supplemental materials.) The
interface consists of six linked panels:

The Control Panel (A) provides user interactions to load datasets
and manipulate settings. Available actions include choosing the
dataset (a1), setting the sampling percentage to analyze, setting the
colormap, and adjusting the transfer function (a2). For focused anal-
ysis and inspection of interesting regions, a cropping functionality is
provided, allowing the user to drag and resize a cuboid selector to
choose the specific sub-region to reconstruct a3.

The Sampling / Ground Truth Panel (B) provides users with
a view of the sampled dataset, and on which the cuboid cropping
preview is applied (see a2). This panel can be toggled from showing
the sampled points to also show the dataset’s ground truth—i.e., the
original grid point dataset. This panel supports interactive zoom,
pan, and rotation.

The Reconstructed Image Panels (C, D) show the dataset re-
constructed via FCNN and Delaunay triangulation. Like the sam-
pling panel, these panels support interactive zoom, pan, and rotation.
Cropping action applied in sampling panel crops the images in these
panels (a3). These two panels can be toggled into an error render-
ing mode, which shows the error between the ground truth and the
reconstructed image—Figures 16–18 shows examples for the three
datasets. The error rendering can be used to help identify regions
with high error compared to regions that are well reconstructed.

The Analysis Panel (E) allows the user to toggle two data summa-
rization views. The histogram view (shown in (E)) uses histograms
to bin the scalar value distributions in the different dataset represen-
tations (original dataset, sampled dataset, reconstruction via FCNN,
reconstruction via Delaunay). The user can examine differences
histogram bins across datasets to see how the scalar bins differ, par-
ticularly to the original dataset (the ground truth). The panel can
also toggle to a line chart view (see e1, bottom), which plots SNR
over sampling percentages for the current timestep.

Finally, the Timeline Selector (E) allows the user to select a
timestep to populate panels (B–E). The line chart in this panel shows
the SNR values for FCNN and Delaunay triangulation. Clicking on
a timestep selects it by moving a vertical bar to that timestep, and
updates the corresponding panels (f1),

6 DISCUSSION AND CONCLUSION

The current work shows that FCNNs are a viable solution for dataset
reconstruction. While the results are good, we consider such work
only the beginning, as there are ample opportunities to investigate
how deep learning can be used and refined for reconstruction of
scientific simulation datasets. We discuss the following points:

Training data point selection The time to train a neural network
is highly dependent both on the computer hardware to be used and on

(a) FCNN (b) Delaunay triangu-
lation

Figure 17: This figure shows how reconstruction error for the com-
bustion dataset (with 1% sampling percentage) differs between
FCNN and Delaunay triangulation.

(a) FCNN

(b) Delaunay triangulation

Figure 18: This figure shows how reconstruction error for the Ex-
aAM dataset (with 1% sampling percentage) differs between FCNN
and Delaunay triangulation.

(a) Hurricane Isabel dataset (b) Combustion

Figure 19: Reconstruction quality comparison between full training
set, half training set and Delauany’s reconstruction.

the number of training samples that are available. We experimented
with reducing this training time further by halving the size of the
training set used to build the FCNN. The results, shown in Figure 19,
indicate that the decrease in quality (compared to use the full training
dataset) was negligible, and even when using 50% of the samples
for training, still generally outpaces Delaunay triangulation. As a
future work, we plan to formally investigate the idea of intelligent
training set creation to support better and faster reconstruction.

FCNN reconstructs better in certain locations compared to
Delaunay triangulation. In developing our visual interface to com-
pare reconstruction quality between FCNN and Delaunay triangu-
lation, we noticed that the latter method failed to capture or learn
the underlying data dynamics or features of interest. This led us
to create the error panel views, which calculates the error at each
grid point by taking the difference compared to the ground truth. It
is easy to see areas with high error using this view. For example,
in Figure 16(b), Delaunay triangulation has trouble reconstructing

9



Online Submission ID: 6560

the coastline around Florida. Similar errors are likewise seen in
Figures 17 and 18. In the combustion dataset, Delaunay triangu-
lation has higher error both in the central turbulence regions and
around the borders. For the ExaAM dataset, the laser eye is not well
reconstructed using Delaunay triangulation. This is one example of
how the visual interface helped us qualitatively assess reconstruction
quality: even when SNR scores were relatively similar between the
two methods, Delaunay triangulation at times had major errors in
important features or regions.

Contributions and Limitations. Experiment 3 showed a sig-
nificant limitation for Delaunay triangulation, as it could not even
reconstruct the dataset, while the FCNN could easily do so. The
experiments illustrate other key benefits for using deep learning to
reconstruct scientific datasets: (1) reconstruction quality is gener-
ally better, (2) once trained, a model reconstructs extremely fast
and in constant time, and (3) models can be saved and used for re-
construction at different timesteps, sampling percentages, and even
dataset resolutions. In addition to these experimental findings, we
contribute the process of designing and fine-tuning a well thought-
out FCNN architecture (see Section 3) and a visualization interface
for comparison and analysis of reconstructed datasets.

Despite these advantages, we also see limitations with the current
deep learning approach. The first is training time. Even when partial
re-training is used, training time makes up the majority of cumulative
reconstruction time. Intelligent set creation provides one strategy to
overcome this. A second drawback is dataset specificity. The FCNN
is trained on the dataset it reconstructs, while Delaunay triangulation
is a general method that can run on any dataset. As a future work,
we intend to explore how neural network models can be trained to
reconstruct varied simulation datasets. A final potential drawback
in our approach (which is also present in Delaunay triangulation)
is uncertainty. A neural network that predicts scalar values with a
measure of uncertainty can be leveraged to reconstruct the dataset
with overall higher SNR values. We additionally plan to explore this
as a part of our future work.

7 CONCLUSION

At current, the use of deep learning for reconstructing point-based
scientific datasets is underexplored. To our knowledge, this is the
first work to delve into this specific topic. Our results are especially
encouraging in two ways: (1) Even using “straightforward” FCNN
architectures, we can create an effective neural network architecture
that achieves excellent results that are in many ways better than the
state-of-the-art reconstruction technique of Delaunay triangulation.
(2) The current work establishes a foundation for future opportuni-
ties, which will likely greatly improve upon these results by creating
much more sophisticated, flexible, and generalizable models.

This work is well-timed, particularly as the age of exascale com-
puting necessitates inventive ways to store, transfer, reconstruct, and
analyze the massive amounts of data that will be generated by scien-
tific computing simulations. As deep learning increasingly becomes
a part of HPC workflows, it is important to keep in mind that explain-
ability and transparency will become key facets to understanding
such techniques. Visual interfaces such as the one implemented here
showcase a key approach to validate and review such techniques.

REFERENCES

[1] http://vis.computer.org/vis2004contest/data.html.
[2] http://vis.cs.ucdavis.edu/Ultravis11/.
[3] https://www.slideshare.net/insideHPC/exa-am-additive-
manufacturing-project-for-exascale.

[4]
[5] M. Berger, J. Li, and J. A. Levine. A generative model for volume

rendering. IEEE Transactions on Visualization and Computer Graphics,
25(4):1636–1650, 2019.

[6] A. Biswas, S. Dutta, E. Lawrence, J. Patchett, J. C. Calhoun, and
J. Ahrens. Probabilistic data-driven sampling via multi-criteria im-

portance analysis. IEEE Transactions on Visualization and Computer
Graphics, 2020.

[7] A. Biswas, S. Dutta, J. Pulido, and J. Ahrens. In situ data-driven
adaptive sampling for large-scale simulation data summarization. In
Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization, ISAV ’18, page 13–18, New
York, NY, USA, 2018. Association for Computing Machinery.

[8] S. Dutta, A. Biswas, and J. Ahrens. Multivariate pointwise information-
driven data sampling and visualization. Entropy, 21(7):699, Jul 2019.

[9] L. Guo, S. Ye, J. Han, H. Zheng, H. Gao, D. Z. Chen, J. Wang, and
C. Wang. Ssr-vfd: Spatial super-resolution for vector field data analysis
and visualization. In 2020 IEEE Pacific Visualization Symposium
(PacificVis), pages 71–80, 2020.

[10] J. Han, J. Tao, and C. Wang. Flownet: A deep learning framework
for clustering and selection of streamlines and stream surfaces. IEEE
Transactions on Visualization and Computer Graphics, 26(4):1732–
1744, 2020.

[11] J. Han and C. Wang. Tsr-tvd: Temporal super-resolution for time-
varying data analysis and visualization. IEEE Transactions on Visual-
ization and Computer Graphics, 26(1):205–215, 2020.

[12] B. Harper. Tropical cyclone parameter estimation in the australian
region. Systems Engineering Australia Pty Ltd for Woodside Energy
Ltd, Perth, 83, 2002.

[13] W. He, J. Wang, H. Guo, K. Wang, H. Shen, M. Raj, Y. S. G. Nashed,
and T. Peterka. Insitunet: Deep image synthesis for parameter space ex-
ploration of ensemble simulations. IEEE Transactions on Visualization
and Computer Graphics, 26(1):23–33, 2020.

[14] F. Hong, C. Liu, and X. Yuan. Dnn-volvis: Interactive volume visu-
alization supported by deep neural network. In 2019 IEEE Pacific
Visualization Symposium (PacificVis), pages 282–291, 2019.

[15] F. Hong, J. Zhang, and X. Yuan. Access pattern learning with long
short-term memory for parallel particle tracing. In 2018 IEEE Pacific
Visualization Symposium (PacificVis), pages 76–85, 2018.

[16] T. T. Nguyen and I. Song. Centrality clustering-based sampling for big
data visualization. In 2016 International Joint Conference on Neural
Networks (IJCNN), pages 1911–1917, 2016.

[17] B. Nouanesengsy, J. Woodring, J. Patchett, K. Myers, and J. Ahrens.
Adr visualization: A generalized framework for ranking large-scale
scientific data using analysis-driven refinement. In 2014 ieee 4th
symposium on large data analysis and visualization (ldav), pages 43–
50. IEEE, 2014.

[18] Y. Park, M. Cafarella, and B. Mozafari. Visualization-aware sampling
for very large databases. In 2016 IEEE 32nd International Conference
on Data Engineering (ICDE), pages 755–766, 2016.

[19] T. Rapp, C. Peters, and C. Dachsbacher. Void-and-cluster sampling of
large scattered data and trajectories. IEEE Transactions on Visualiza-
tion and Computer Graphics, 26(1):780–789, 2020.

[20] S. Sagawa, A. Raghunathan, P. W. Koh, and P. Liang. An investigation
of why overparameterization exacerbates spurious correlations. arXiv
preprint arXiv:2005.04345, 2020.

[21] Y. Su, G. Agrawal, J. Woodring, K. Myers, J. Wendelberger, and
J. Ahrens. Taming massive distributed datasets: data sampling using
bitmap indices. In Proceedings of the 22nd international symposium
on High-performance parallel and distributed computing, pages 13–24,
2013.

[22] S. Weiss, M. Chu, N. Thuerey, and R. Westermann. Volumetric iso-
surface rendering with deep learning-based super-resolution. IEEE
Transactions on Visualization and Computer Graphics, pages 1–1,
2019.

[23] S. Wiewel, M. Becher, and N. Thuerey. Latent space physics: Towards
learning the temporal evolution of fluid flow. Computer Graphics
Forum, 38(2):71–82, 2019.

[24] J. Woodring, J. Ahrens, J. Figg, J. Wendelberger, S. Habib, and K. Heit-
mann. In-situ sampling of a large-scale particle simulation for inter-
active visualization and analysis. In Proceedings of the 13th Euro-
graphics IEEE-VGTC Conference on Visualization, pages 1151–1160.
Eurographics Association, 2011.

[25] Y. Xie, E. Franz, M. Chu, and N. Thuerey. Tempogan: A temporally
coherent, volumetric gan for super-resolution fluid flow. ACM Trans.
Graph., 37(4), July 2018.

10

http://vis.computer.org/vis2004contest/data.html
http://vis.cs.ucdavis.edu/Ultravis11/
https://www.slideshare.net/insideHPC/exa-am-additive-manufacturing-project-for-exascale
https://www.slideshare.net/insideHPC/exa-am-additive-manufacturing-project-for-exascale

	Introduction
	Related Work
	Methodology
	Experimental Datasets
	An Overview of Fully Connected Neural Networks
	Training Dataset and FCNN Architecture
	Selecting and Tuning the FCNN

	Experiments and Results
	Testing Setup
	Experiment 1: Varying Sampling Percentages
	Experiment 2: Testing Over Multiple Timesteps
	Experiment 3: Reconstruction Volume Upscaling

	Reconstruction Visualization Interface
	Discussion and Conclusion
	Conclusion

